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= Demonstration Problem

= Unique Multiscale Approach
= Software Plan

= Exascale Emulation

= V&YV, UQ Innovations

= UF Team & Partnership

= NNSA Interaction
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Center for Compressible Multiphase Turbulence

Purpose of the Center

= To radically advance the field of CMT

= To advance predictive simulation science on current and

near-future platforms with uncertainty budget as backbone

= To advance a co-design strategy that combines exascale

emulation, exascale algorithms, exascale CS

= To educate students and postdocs in exascale simulation

science and place them at NNSA laboratories
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» Experimental measurements for validation
CCMT
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UFHSiB: Eytreme Multiphase Flow

Photron FASTCAM 545 mode

10000 fps 117000 sec 1024 %720
Marual 4604 frame : -940 -00000:00.0340
Date: 2011/8/23 Tirme - 15:04

We desire to perform predictive simulation of these flows
with as much multi-scale physics as possible



i Single Discipline, But Multi-Physics

Complex interactions require a unified approach

* Momentum, energy coupling
= Turbulence modulation
= Preferential accumulation

= Shock-turbulence interaction

w%

Compressi-
bility

» Shock-particle interaction
» Additional shocks and expansions
» Strong flow modification




UNIVERSITY

= Qur focus will be on

— Turbulence at the rapidly expanding material front

— Rayleigh-Taylor (RT) and Richtmeyer-Meshkov (RM)
instabilities induced turbulence

— Multiphase instability and particulate mixing at the front
— Self-assemble of explosive-driven particles
= We will minimize the following complications
— Free-shear and wall turbulence (stay away from boundaries)
— Detonation physics (use simple, well-studied explosives)

— Fragmentation or atomization physics (avoid casing, liquids)

— Reactive physics (use non-reactive metal particles)




UFHAR Multiscale Approach

Detonation Grain I Charge .
| Thickness Size I Size EXp/O_S'I I/e]
EME—men )
' ! Particl : Instabiliti : )
L : Wee 1 ™St ! Particles)
| i ! Length
i : i Time
) s 42 ¢ H - >i - ’: >
At§ mllStlc . Microscale ' Mesoscale ' Macroscale
cale i cluster of particles i Instabilities Experimental setup
: O(1) - O(10% 10(10°) — O(107) j > 0(10%)




UFHSHS Multiscale Coupling Strategy

EOS, Thermodynamic
and transport properties,
shock Hugoniot

Atomistic
Quantum and MD

Macroscale
> 0(10°) particles
Macro LES of turbulence
Point-particle approximation

Microscale
O(1) — O(10?) particles
Fully resolved, DNS

Mesoscale
0(10°) — O(108) particles
Well resolved interface turbulence

Unresolved particulate turbulence Particle-flow mass,
Multiphase LES closure (Meso-LES) momentum and
models for interface & energy coupling
particulate turbulence models
CCMT

_‘—T19



UFHSHS: Multiscale Coupling Strategy

= Qur approach is similar in spirit to many ongoing
multiscale efforts

— “Divide, Bridge, and Conquer” strategy

= Unique aspects of present approach
— Lagrangian particles preserve heterogeneity and anisotropy

— Opportunities for concurrent macro, meso and microscale

simulations

— But there is no dimensionality reduction as in contact-line
problems
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At Micro to Mesoscale

= Mass, momentum and energy coupling at extreme conditions
of pressure and temperature

= Understand and modeling of particle-particle, wake-particle
and wake-wake interactions

At Meso to Macroscale
= Extend understanding of Rayleigh-Taylor and Richtmeyer-
Meshkov instabilities to multiphase flows

= Establish the statistical properties of the interfacial

multiphase turbulence

= Physics of particle self-assembly into focused jets
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= Problem Hierarchy: to systematically validate our

multiscale framework and establish uncertainties

= Systems Engineering Plan: to build on existing codes and
simulation framework for current petascale and future

exascale capability

= Simulation Road Map: that organizes the proposed

integrated simulations and work towards exascale
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UFHSHSA Multi-scale Problem Hierarchy
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UFRGE Multiscale Problem Hierarchy

‘ of full physics
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UFRGES Multiscale Problem Hierarchy

(Macro) System-scale
Validation & UQ
of full physics
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Demonstration Problem
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Characterization
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P Simulation Roadmap

CCMT
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X¥ = As in Figure 6

n = # of bundles

m = Bundle size

Proc = processors

PRS = Partially
Resolved
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VPSS Rocfun - Existing Integrated Code
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= Developed under ASAP program & continued at University of Florida
= Mature code, used in several projects, demonstrated scalability
= Unified code for microscale, mesoscale and macroscale simulations

= Extensively verified, detailed documentation, rigorous validation
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Stage |, II, Il
Petascale code

™\

Stage lll, +
Exascale code

CCMT
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UNIVERSITY of

UF FLORIDA

e Scales beyond 1 million
MPI processes:
— 524288 cores

« 1 o0r2ranks / core

— 60% parallel efficiency at
1 million processes

— Scalable multigrid solvers:

« 15 jterations/step

— Scalable 1/0: 72 GB/sec
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Time per step

0.1

Scalability to Million Processes

Nek5000 on a Million Processes

1 process/core —+—

2 process/core —w—

Reactor Assembly
Strong scaling
N=2.0 billion

S. Parker, ALCF

4000 pts/core
2000

pts/process

16384 32768

131072 262144 524288

Number of Cores
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* Exascale Emulation with FPGAs

- Behavioral Emulation

Object (BEO)

Multiscale approach to Exascale studies: |
l
I

= Exploration of Exascale devices, nodes, and systems,
represented by fabrics of interconnected G "

Tokens (static)

Architecture BEOs (behavioral emulation objects)  wson |

other BEOs '\,

|Measurements
| (fatency, B/W,
| energy, etc.)

_______
Calibration

— MICRO: study and characterization of devices for Exascale
e Fabric of BEOs representing key resources at device scale

e Processor cores, memory hierarchy, chip-level interconnect, I/0

— MESO: study and characterization of nodes for Exascale
e Fabric of BEOs representing key resources at node scale
e Processor devices, memory, server-level interconnect, storage

— MACRO: study and characterization of systems for Exascale
e Fabric of BEOs representing key resources at system scale

e Processing nodes, system-level interconnect, storage

= Architecture BEOs stimulated by corresponding set of Application BEOs
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UNIVERSITY

" Periodic experiments and simulations of “Demonstration
Problem” essential to establish uncertainty deficit

= We will determine contributions of models to uncertainty
of demonstration problem

— Multiscale uncertainty propagation with Bayesian updating
and successive surrogates

— Physics-inspired surrogate modeling for up-scaling

" Prioritize based on potential for reducing uncertainty
— Improvements in physical models
— Improvements in numerics and simulation roadmap
— Improvements in experimental procedure/measurements

» Essential for achieving accuracy targets here and at NNSA
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UFistiipecision Making with Uncertainty Budget

Validation &
Uncertainty
Quantification

Uncertainty
Reduction

Uncertainty
Reduction

A

Macroscale
Experiments/Simulations

Validation
UQ & Uncertainty
Propagation

Mesoscale
Experiments/Simulations

Validation
UQ & Uncertainty
Propagation

Microscale
Experiments/Simulations

CCMT




UFHSE Uncertainty Budget — Implementation

» A dedicated research staff will be in charge of doing the
overall uncertainty budget

= Will be assisted by a graduate student

= Will closely interact and obtain uncertainty information
from other research staff and students

= Uncertainty budget will be used by Simulation/ Experiments
Planning & Review Team (SEPRT)

" Uncertainty budget will be used by Exascale Co-Design
Team (ECT)

" Uncertainty budget will be used by Center Management
Committee for resource allocation
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UFHGER Exascale Emulation Uncertainty Budget

Validation
& Error
Quantification

[ NGEE-Macro (System level)

Same cycle for notional and

Validation exascale platforms but with

e uncertainty quantification
and propagation

[ NGEE-Meso (Node level)

Validation
EQ & Error
Propagation

CCMT
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UNIVERSITY

= Uncertainty budget driven decision making

— Validation that each change in models and experimental

procedure improves prediction capabilities

= Pushing parallels between CMT multiscale modeling and

multi-level exascale emulation

= Advanced techniques for reducing cost of uncertainty
propagation
— Hybrid surrogates and multiple surrogates.

= Novel techniques for extreme quantities and rare events

= Cross-cutting team-based approach to V&V and UQ
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UFESKS: UF Team & Partnership

Explosive experiments, 7 Years, FIRE

Father of PIV

Author of Nek
;g fg%s 12 Years
9 Joint
publications Z;n .
Integrated publications

Code
CS

CCMT Petascale, 18 Years, 6 Joint publications
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* Tasks and Teams

Center Management
Committee
Director, TM, Task
Chairs
e /“ r I ™ \ N
Exascale Co- || Code Integ Sim/Exp
Design Team Team Planning &
EX Chair, CSA, Review Team
EX Lead, Director, TM, Director,
Director, TM | |TM, CS Lead || UQ Lead )
Continuous Task %
Phase R/P-P1 R/P-P1 R/P-P1 Lead 1 §
Particulate Task E”
Phase R/P-P2 R/P-P2 R/P-P2 Lead T E;
Computer Task =
Science R/P-Cl R/P-Cl Lead [ | é
[iF]
V&V Task 'S
UQ R/P'CZ RfP-C2 Lead 1 :
%
Task

Exascale R/P-C1 Lead [ %

. Y / J

[

The Center will be organized by physics-based tasks and cross-cutting
teams, rather than by faculty and their research groups.
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UFHOth NNSA Interaction Goals

Research Exchange Relationships and Feedback

» Emphasize staff/student
interaction with NNSA

=  Maintain center’s focus on

areas of relevance to NNSA
— Facilitate future employment

at NNSA labs

and avoid duplication

" Leverage ongoing cutting- — Nurture existing and build

edge research at Labs , ,
new relationships

— Experimental data for

validation New Curriculum

=  Graduate Certificate in

— Exascale emulation and
simulation, proxy-apps “Scientific Computing”

— PSAAP-II main beneficiary
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Uriiotbs Exascale Interactions

Proxy-apps from ExMatEx and Exact
SNL Structural Simulation Toolkit (SST)

Techniques for exascale emulation,
exascale UQ, load balancing,
multi-objective optimization

CCMT
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Urt Experimental Interactions

SNL Multiphase shock tube experiments
LANL CoMuEx multiphase mixing experiments
LANL dynamic x-ray radiography technique

Input into Design of Experiments
Techniques for extreme diagnostics

CCMT
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PN CMT Physics Interactions

LLNL Explosive dispersal and after-burn M&S
LLNL & LANL RT & RM instability simulations
ExaCT & LANL Compressible turbulence
SNL Heterogeneous detonation M&S, ...

Novel models and numerical methods
for micro, meso & macroscale
simulation

CCMT




UFiictia: goftware Interactions

DAKOTA , SAMRAI, UQ Pipeline
Co-op, Hypre, OpenMPI, Zoltan, Visit

4 )

ALE3D, CALORE, CFDLib,
CTH, FUEGO, PREMO,

PRONTO, RAGE, SIERRA

\_ /

CMT Codes and modules
Emulation (NGEE-micro, meso & macro

CCMT
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= Compressible multiphase turbulence (CMT) is a science

problem of strong relevance to NNSA

= We have developed a unique multiscale approach to

answer important scientific questions

" |nnovations in exascale emulation and UQ techniques

will enable predictive exascale simulations of CMT
= We have assembled an outstanding team

= We look forward to close interaction with NNSA Labs
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Do you have any
questions?




Wi Explosive Spherical Dispersion

We desire to perform predictive simulation of these flows
with as much multi-scale physics as possible
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UFiokis How Different Pieces Fit

UQ: Uncertainty Quantification
UR: Uncertainty Reduction

DB: Dakota Bundles

CS: Concurrent Simulations

Proxy-apps
Energy-efficient
algorithms

Load balance, etc.

Simulation
Roadmap



